尊敬的顾客

感谢您使用本公司产品。在您初次使用该仪器前,请您详细地阅 读本使用说明书,将可帮助您熟练地使用本仪器。

我们的宗旨是不断地改进和完善公司的产品,因此 您所使用的仪器可能与使用说明书有少许的差别。若有 改动,我们不一定能通知到您,敬请谅解!如有疑问, 请与公司售后服务部联络,我们定会满足您的要求。

由于输入输出端子、测试柱等均有可能带电压,您在 插拔测试线、电源插座时,会产生电火花,小心电击, 避免触电危险,注意人身安全!

◆ 慎重保证

本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。一年(包括一年)内如产品出现缺陷,实行免费 维修。一年以上如产品出现缺陷,实行有偿终身维修。

◆ 安全要求

请阅读下列安全注意事项,以免人身伤害,并防止本产品或 与其相连接的任何其它产品受到损坏。为了避免可能发生的危 险,本产品只可在规定的范围内使用。

只有合格的技术人员才可执行维修。

一防止火灾或人身伤害

使用适当的电源线。只可使用本产品专用、并且符合本产品规格 的电源线。

正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。

产品接地。本产品除通过电源线接地导线接地外,产品外壳的接地柱必须接地。为了防止电击,接地导体必须与地面相连。在与本产品输入或输出终端连接前,应确保本产品已正确接地。 注意所有终端的额定值。为了防止火灾或电击危险,请注意本产品的所有额定值和标记。在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。

请勿在无仪器盖板时操作。如盖板或面板已卸下,请勿操作本

产品。

使用适当的保险丝。只可使用符合本产品规定类型和额定值的 保险丝。

避免接触裸露电路和带电金属。产品有电时,请勿触摸裸露的 接点和部位。

在有可疑的故障时,请勿操作。如怀疑本产品有损坏,请本公司维修人员进行检查,切勿继续操作。

请勿在潮湿环境下操作。

请勿在易爆环境中操作。

保持产品表面清洁和干燥。

一安全术语

警告:警告字句指出可能造成人身伤亡的状况或做法。

小心:小心字句指出可能造成本产品或其它财产损坏的状况或做法。

<u> </u> ,	设备特点	. 5
)	基本工作原理	9
Ξ,	使用与操作说明	10
四、	测试条件	11
五、	操作界面说明	16
六、	上位机软件	28
七、	常见故障及排查方法	35

一、设备特点

在所有信息化、自动化程度不断提高的运行设备、运行网络系统中,不间断 供电是一个最基础的保障.而无论是交流还是直流的不间断供电系统,蓄电池作 为备用电源在系统中起着极其重要的作用。平时蓄电池处于浮充备用状态,一旦 交流电失电或其它事故状态下,蓄电池则成为负荷的唯一能源供给者。

我们知道, 蓄电池除了正常的使用寿命周期外, 由于蓄电池本身的质量如材 料、结构、工艺的缺陷及使用不当等问题导致一些蓄电池早期失效的现象时有发 生。为了检验蓄电池组的可备用时间及实际容量, 保证系统的正常运行, 根据电 源系统的维护规程, 需要定期或按需适时的对蓄电池组进行容量的核对性放电测 试, 以早期发现个别的失效或接近失效的单体电池予以更换, 保证整组电池的有 效性; 或者对整组电池的预期寿命作出评估。

我司经多年研制,以其专有技术,开发成功系列化的、智能化程度和精度极高的蓄电池充放电测试仪。本测试仪可在蓄电池离线状态下,作为放电负载,通 过连续调控放电电流,实现设定值的恒流放电。在放电时,当蓄电池组端电压、 或单体电压跌至设定下限值、或设定的放电时间到、或设定的放电容量到时仪器 将自动停止放电,并记录下所有有价值的、连续的过程实时数据。

蓄电池充放电测试仪系统对单体电池的电压监测信息,采用无线中继接入, 简单、安全、精确。

蓄电池充放电测试仪有非常友好的人机界面,不仅可以在菜单的提示下完成 各种设置和数据查詢,而且放电的过程数据,均保存在设备的内存中,通过数据 接口可以转存到U盘,并通过上位机的专用软件对数据进行分析,生成需要的曲 线和报表。

蓄电池充放电测试仪有完善的保护功能,不仅有声、光告警,而且还有明确 的界面提示。

1.1 放电仪不带监测功能特点

▶ 采用 PTC 陶瓷电阻,避免了红热现象,使整个放电过程更安全。

具有核对性容量测试、暂停放电、并机负载测试、在线补偿式放电、等功能,可适应各类复杂的现场情况。

- ▶ 有 USB 接口,可将放电过程的数据转存入 U 盘,并导入 PC 机。PC 数据 管理软件可对电池放电的过程进行分析、并可生成相应的数据报表。使 数据的转存更加方便。
- ➤ 采用智能单片机 ARM 控制、7 寸触摸液晶中英文显示。菜单操作简单明 了。
- 自动保护功能,设定放电时长到、放电容量到、蓄电池组电压低于设定的最低保护电压、负载连线出现异常等自动停止放电并报警,同时自动记录停机方式。
- 多种放电终止条件,包括电池组终止电压、放电容量、放电时间,确保 放电测试的安全。
- 可进行在线补偿式放电,通过接入外置的电流钳形传感器(选配件)可 对在线工作中的蓄电池进行放电测试,极大地方便了测试工作。该功能 尤其适合于只有单组备用电池的场合。
- 1.2 放电仪带监测功能特点
- ▶ 采用 PTC 陶瓷电阻,避免了红热现象,使整个放电过程更安全。
- ▶ 具有三种无线/有线通讯方式,1、无线采集盒与放电主机之间具有无线 /RS485 通讯功能,可通过放电仪实时监测各单体电压状况。2、PC 机端 上位机软件与无线监测模块具有无线/RS485 通讯功能,可在不需要接入 放电仪的情况下通过无线方式直接监测单体电压状况。3、PC 机端上位 机软件与放电测试仪之间通过 RS485 通讯线连接后,可进行远端控制放 电。
- ▶ 无线采集盒可对每节电池进行监测,实现对电池组放电过程的完整监控。
- 设备安装、调试、维护简便,各采集模块前后采用隔离技术,安全性、 可靠性程度高
- 配备的 PC 机上位机软件,可对记录的总电压、放电电流和各单体电池电压等数据进行分析、并可生成相应的数据报表。直观反应蓄电池组性能的曲线,图形、报表等,并可打印、查询。
- ▶ 有 USB 接口,可将放电过程的数据存入 U 盘,并导入 PC 机。PC 数据管

理软件可对电池放电的过程进行分析、并可生成相应的数据报表。使数 据的转存更加方便。

- ▶ 采用智能单片机 ARM 控制、液晶中英文显示。菜单操作简单明了。
- 自动保护功能,设定放电时长到、放电容量到;蓄电池组电压低于设定的最低保护电压;负载连线出现异常等,自动停止放电并报警,同时自动记录停机方式。
- 可设定测试/放电终止条件,包括单体电池电压、电池组终止电压、放电电流、放电时间。
- 可记录测试/放电过程每节电池放电情况,主要是电池组总容量、总电压、 总电流以及电压最低的单体电池的电压变化情况。
- 可进行在线补偿式放电,通过接入外置的电流钳形传感器(选配件)可 对在线工作中的蓄电池进行放电测试,极大地方便了测试工作。该功能 尤其适合于只有单组备用电池的场合。

		主要技术指标				
工作模式	可单机伤	使用,可并机使用,	可远程控制和状	态监控		
适用电池组	48V	110V	220V	380V		
充电电压	40~60V	95~150V	$190 \sim 300 \text{V}$	$350{\sim}450{ m V}$		
充电电流	10~150A	1~80A	1~40A	1~20A		
放电电压	38~60V	80~135V	$176{\sim}270$ V	$300 \sim 460 \text{V}$		
放电电流	0~150A	$0 \sim 150 \text{A}$	0~100A	$0{\sim}50\mathrm{A}$		
电流精度		1%	, D			
电压精度		0.5	5%			
单体电压精度		0.2	2%			
单体电压		$0.500V \sim 16.00V$	W(分辨率 1mv)			
充放电时间		0~99 小	时 59 分			
供电电源		AC:220V	//380V			
仪器尺寸		610 x 390	$x 675 \text{mm}^3$			
重量		611	ζg			
冷却方式		强制风	冷式			
搬运方式		工业万	向轮			
报警产生及安	主及安 测试线极性;测试充放电电流超过设定值;电压高于设定值;温度					
全措施	常;风扇故障灯,仪表自动报警并停止充放电。					
显示及打印项	示及打印项 充放电电压、充放电电流、充放电时间、充放电容量等设定及实					
目		目的动态资料。	显示及打印。			
	I	工作环境				
散 热		强制。	风冷			
温度	工作	范围: -5~50℃ り	<u></u> <u></u> じ藏温度: -40~7	0°C		
湿度		相对湿度 0~90	% (40±2℃)			
海 拔		额定海拔	4000 米			
噪音		< 60)dB			
		工作电源				
电 压	单相三线制:	220V AC (-20	%~+30%),频率:4	45~65Hz;		
おけて海い子		输入一机壳: 2	2200Vdc 1min			
		制八一制出: 2 输出一机壳.	2200Vdc 1min			
安全性		<u> </u>	510950			
	I	接线				
		国标公插座,适用				
直流输出	仪	表 25mm ² 电缆快接	插头(红正黑负)			

备注: 其他电压等级及电流等级仪表可咨询我公司

二、基本工作原理

2.1 蓄电池测量原理

由于蓄电池电化学反应的复杂性,以及各种材料、结构、制造工艺及使用环 境的不同,致使不同厂家蓄电池的特性存在较大差异,即使同一厂家生产的蓄电 池,其单体特性也会有一定的离散性。迄今为止,世界上尚没有一种简单有效的 方法能够对电池性能进行快速准确的判定。蓄电池性能的检测和失效预测,仍是 一个很复杂的电化学测量难题。

曾在电力、通信、金融、交通等行业中大量使用的固定式隔酸防爆铅酸蓄电 池,可通过测量端电压、查看电解液密度、液位、温度等了解电池状态。然而, 阀控式铅酸蓄电池的密封、贫液式设计,使得我们很难掌握其健康状况,隔酸防 爆蓄电池的检测维护手段已不再适用于阀控式蓄电池,这正是当前蓄电池运行管 理的缺憾和难点。

目前,常用的检测方法为平时测量电池的端电压和每年进行核对性放电容量测试。我们认为:

 1、蓄电池浮充状态下的端电压与容量无对应关系.
 我们知道,即使性能很差的蓄电池在浮充状态下也可能测得合格的电压。因此, 平时处于浮充状态下的端电压是不能真实反映蓄电池性能的.

2、全容量放电测试仍为测试蓄电池组实际容量准确有效的方法. 我们知道,蓄电池组的容量等于该组蓄电池中性能最差的那节蓄电池的容量。因此,对蓄电池组的检测可转变为对落后电池的检测,找出落后电池并测得该电池的容量即可得到电池组的容量。

对蓄电池组以规定的恒定电流进行放电,同时监测每一节蓄电池的电压,当 其中任何一节电池的电压跌到终止电压时,所放出的容量即为该蓄电池组的实际 容量。该方法真实准确。

同时,我们知道,蓄电池具有如下的放电曲线:

从蓄电池的放电曲线,可以看出:

1、相同的放电曲线反映了相同的电池性能。对同一厂家、相同配方和生产 工艺的同规格蓄电池其特性曲线是一样的(暂不考虑生产中的离散性)。

2、同为一组的各单体电池由于容量不同,将遵循不同放电率的放电曲线。 对蓄电池组进行放电时,各单体电池由于容量不同,而放电电流相同,因此各自 是在以不同的放电率进行放电,显然在放电时将遵循不同放电率的放电曲线。

2.2 恒流原理

测试仪的放电回路采用在中央处理器控制下的 PWM + PID 闭环控制技术,使得功率回路能够精确的在设定的放电电流下工作。

三、使用与操作说明

3.1 设备面板说明

如下图:

四、测试条件

4.1 使用环境要求

应无腐蚀性、爆炸性和破坏绝缘的气体及导电尘埃等。

4.2 测试仪与电池组连接

步骤一:连接放电仪 AC220V 工作电源线。

步骤二:将放电导线的快速接头插入测试仪的快速插座对接(红正黑负), 然后将放电导线另一端分别与电池组两端连接(红正黑负)。如果此时极型接错, 会有蜂鸣器提示。

步骤三:将电压检测线分别与放电仪的总电压检测端口与电池总电压的正负 极相连(红正黑负)。

步骤四:开启放电仪前面板红色的船型电源开关,最后合上前面板的空气断路器,(注意:空气断路器最后合上,防止因接错极型没有报警而烧毁放电仪)

4.3 单体监测盒与电池组连接(电池数量为12 整数倍)

将单体电池检测模块的检测线接入电池单体,连接示意如下:

单体监测盒与电池组连接示意图(从正极开始)

模块连接线有 12 根红线,1 根黑线;按线的长短区分顺序,黑线夹在第一个 电池的负极,其他的按顺序接在相应电池的负极上,确保按顺序接好;(注意: 不论电池是正极开始,还是负极开始,都只能按0号线接负级的方式进行连接, 正负序通过软件方法在显示屏中进序颠倒)

模块兼容 2~12V 电压等级的蓄电池,且为模块电源为内部取电,无需外接 电源。如需测量其它电压等级的电池,请咨询我公司技术人员进行定制。

模块电压采集精度为±0.05%,分辩率为1mV。

4.4 单体监测盒与电池组连接(电池数量不为12 整数倍)

当电池数量不为12的整数倍时,请将前12*N节电池按4.3的方法进行连接, 再将剩下的不足12节电池按下图进行连接:

注意:将空余的测试端子与电池的最后一节电池正极进行短接,如下图(以8 组电池为例):

从负极开始的电池接线例子:

55 节 2V 蓄电池组成的 110V 蓄电池组,电池连接和标识方式为:第 1#电池 的负为整组电池的负极(从负极开始),共需要 5 个采集盒。具体接线方法为:

第1个采集盒接第1#~12#蓄电池,0号线接1#电池的负;

第2个采集盒接第13#~24#蓄电池,0号线接13#电池的负;

第3个采集盒接第25#~36#蓄电池,0号线接25#电池的负;

第4个采集盒接第37#[~]48#蓄电池,0号线接37#电池的负;

第 5 个采集盒接第 49#[~]55#蓄电池,0 号线接 49#电池的负,只接了 7 节电池,剩下的 8[~]12 号采集线全部插在第 55 节电池的正极上;

从正极开始的电池例子:

55 节 2V 蓄电池组成的 110V 蓄电池组,电池连接和标识方式为:第 1#电池 的正为整组电池的正极(从正极开始),共需要 5 个采集盒。具体接线方法为:

第1个采集盒接第55#~44#蓄电池,0号线接55#电池的负;

第2个采集盒接第43#~32#蓄电池,0号线接43#电池的负;

第3个采集盒接第31#~20#蓄电池,0号线接31#电池的负;

第4个采集盒接第 $19\#^8$ #蓄电池,0号线接19#电池的负;

第 5 个采集盒接第 7#[~]1#蓄电池,0 号线接 19#电池的负,只接了 7 节电池,剩下的 8[~]12 号采集线全部插在第 1 节电池的正极上;

4.5 单体监测盒与放电仪主机之间的连接

单体监测盒与放电仪主机之间可以通过射频无线方式进行连接,也可以通过 RS485 有线方式进行连接。二者任选其一,射频无线连接方式为标配,RS485 有 线方式连接线为选配。

一般测试情况下通过射频无线方式即可,但在测试现场有 433M 射频干扰或 需要多个带监测放电仪同时在同一区域进行放电测试时需要使用 RS485 通讯方 式,以避免干扰。

射频无线连接方式如下:

单体监测盒与放电仪主机之间无线射频方式连接示意图

当单体模块盒较多或测试现场电磁干扰比较大时,可增加通讯回路(下图虚 线部分)以消除干扰。

单体监测盒与放电仪主机之间 RS485 有线方式连接示意图

4.7 单体模块通讯地址设置连接

所有的单体模块在出厂时已经设置好通讯地址,并将地址标签贴于单体采集 盒的正面,如果在测试过程中出现正在使用的单体采集盒损坏或某个通道采集不 到电压,则可以通过现场临时更改通讯地址方式来应付。

例如: 放电仪标配有 10 个采集盒, 但实际测试只使用了前 8 个, 测试过程 中发现第2个采集盒有故障则可以通过修改第9个采集盒的通讯地址为2 来临时 应付测试。

软件界面设置方法请参考第5.4节【单体监测模块地址置】。

单体模块通讯地址设置连接如下图:

4.8 在线补偿式放电

在线补偿式放电测试条件为:1、电池不脱离负载;2、充电机输出断开;3、 放电电流大于负载电流。该测试方式特别适合于只有单组备用电池,不希望在测 试过程中电池与负载脱离的场合。

在测试过程中,如果产生意外停电,蓄电池仍然可以自动切换到负载端供电, 而放电仪则会因实际电流大于设定电流而自动停止放电。

在线补偿式测试需要选配霍尔元件电流钳。接线示意图如下:

在线补偿式放电连接示意图

工作原理:

放电仪主机放电电流仍然设置电池放电电流,内部负载会根据钳形电流传感 器检测到的电流值而自动减小,保证电池组恒流放电。

主机显示电流(25A) = 电池组放电电流(25A) = 主机内部放电电流(16A) + 实际负载电流(9A),由于在线放电时实际负载电流会随着在线电压的变化而

变化, 主机内部放电电流也会自动进行调整, 以保证蓄电池组一直以真正的恒流 方式放电

(注: 在线补偿式放电测试时请调整整流器的输出电压为0或关闭, 否则放电 电流来自开关电源输出。其他操作跟单组测试相同。)

五、操作界面说明

本仪器为电阻触摸屏,请使用手指或软质触摸笔进行触击,请勿使用硬物进行敲击。

打开电源开关,将显示开机界面,开机界面显示内容包括中英文设备名称, 中英文界面选择按钮。

(注意:选择中文或英文界面后,如果想切换到另一种语言,则需要重启放 电仪或断电重新开机)

5.1 开机界面

在开机界面状态下选择【中文】或【English】按钮后进入主菜单:

5.2 主菜单

选择对应的功能进入子菜单:

5.3 系统设置介面:

【过压保护值】: 当放电仪检测到放电端子上的电压大于该值持续3秒后,将自动停止放电。

【过流保护值】: 当放电仪检测到放电电流大于该值并持续3秒后,将自动停止 放电。 【单体电压顺序】: 该选项有:"从正极开始"和"从负极开始"两个选项,必须 根据实际电池连接方式进行选择。

【存储间隔】: 是指数记录的间隔时间, 以秒为单位。

【单体通讯方式】: 是指单体电压采集是以哪种方式进行的通讯: RS485 或无线。 【单体模块个数】: 是指测试系统中连接和使用了几组单体电池模块。

【主从方式】: 在并机使用时, 是作为主机使用或是从机使用。

【从机地址】: 是指在并机且作为从机时的 RS485 通讯地址,或作为远端放电时的通讯地址。

【单体电压采集】: 是指打开或关闭单体电压采集功能,关闭后将不进行单体电压的采集和屏蔽单体电压低故障停机功能。

【电流传感器】: 是指在放电测试时使用的是仪器内部的电流传感器还是外部钳 形电流传感器。当对蓄电池组进行在线补偿式放电时必须选择外部钳形电流传感 器,否则只能必须选择为"内部电流传感器"。(注意:请勿错误选择,否则将会 导致放不了电,或放电不受控制而烧毁放电仪)

【远端控制放电】: 当为"开"时,则可以通过上位机软件或远端设备对仪器进行远端放电电流的控制,并可实时监测其电压、电流等参数。本机进行放电测试时,请选择"关",否则放电仪将不受屏幕指示控制。

【USB 状态】:实时显示外部 USB 存储器是否插入设备。

5.4 系统设置 2 界面

【当前时间】: 实时显示系统内部的时钟,可通过"更改时间"按钮对时间进行 更改操作。

【单体监测模块地址置】: 当单体电压需要更改通讯地址时,在单体模块与放电 仪通过 RS485 总线一对一连接时,输入设置的地址,然后点击"确定设置"按钮, 可更改单体模块的通讯地址。更改成功后,单体模块上的状态指示灯将以 500ms 的频率连续闪烁 5 次,接线方式请参考第 4.7 节。

【维护密码】: 此选项为生产厂家或售后人员使用。

5.5 放电测试选择界面

【放电模版】可调用事先存入常用的6个参数模版,在放电测试前直接选中其中一个即可进行测试,无需频繁输入参数,极大地提高了工作效率。

5.6 放电模版界面

放电操作可以根据放电仪内部用户预先设置的六组放电参数进行放电测试。

直接点击下图每行红框区域即可直接进入到放电参数界面,相应的放电测试 参数已自动填入。

如果需要修改放电模版,则点击"修改模版"按钮,则进入到修改模版界面。

	放	电模	版	
整组电压下限	单体电压下限	放出容量	放电时长	放电电流
80. OV	0. 00V	100Ah	100Min	5. OA
200. OV	12.00V	100Ah	60Min	10. OA
200. OV	12.10V	100Ah	60Min	15. OA
200. OV	12.20V	100Ah	60Min	20. OA
200. OV	12.30V	100Ah	60Min	25. OA
200. OV	12.40V	100Ah	60Min	30. OA
	修改模版		返回	

5.7 修改模版界面

用户可通过修改模块菜单来修改预设模版功能,按下"确定"按钮后,修改 后的模版数将存入放电仪内部 Flash 存储空间,掉电不丢失。修改完模版数据后, 点击"确定按钮"则返回到之前的测试模版界面。

	修	改模	版	
整组电压下限	单体电压下限	放出容量	放电时长	放电电流
80. 0V	0.00V	100Ah	100Min	5. 0A
200. OV	12.00V	100Ah	60Min	10. OA
200. OV	12.10V	100Ah	60Min	15. OA
200. OV	12.20V	100Ah	60Min	20. 0A
200. OV	12.30V	100Ah	60Min	25. OA
200. OV	12. 40V	100Ah	60Min	30. 0A
			确定]

5.8 放电参数界面

在选择"放电测试"后,将首先进入放电参数设置界面,该界面已经预置为

用户上一次修改后的参数。点击"确定"后将进行【放电测试】界面。

	放	电	参	数			
整组类型: 单体类型: 电池组数: 标称容量: 单体电压故	48V ▼ 12V ▼ 1 250Ah 陸数: 1		机电每放散	号号数式度: 2	0 0 2 恒流 8.1C	-	
			C	确定			

【整组类型】: 请按实际测试蓄电池额定整组电压选择该参数值。

(注意:如果放电仪为固定电压,则该选项不用进行选择,如果设备为宽电压 类型,则必须正确选择相应的整组电压类型,否则将有可能导致放电电流异常)

【单体类型】: 请按实际测试蓄电池额定单体电压选择该参数值;

【电池组数】: 请按实际测试蓄电池组数进行输入。

(注意:请正确填写该值,否则会影响单体电池检测数据顺序不正确)

【标称容量】: 请按实际测试蓄电池参数输入该参数值;

【单体电压故障数】: 在放电测试过程中,如果单体电压低于"最小单体电压" 值的数量大于该值,则放电仪自动停止放电,并报"单体电压低"故障。

【机房编号】: 请按实际测试蓄电池参数输入该参数值;

【电池组号】: 请按实际测试蓄电池参数输入该参数值;

【每组节数】: 请按实际测试蓄电池参数输入该参数值;

(注意:请正确填写该值,否则会影响单体电池检测数据顺序和电压个数不正确)

【放电方式】: 请按实际测试蓄电池参数输入该参数值;

【散热温度】:实时显示放电仪内散热片温度值,当超过65度并持续3秒后,将

会报过温停机故障。

5.9 放电测试界面

【整组电压下限】: 在放电过程中如果整组电压低于该设定值,系统将停机,并 报整组电压低故障。

【单体电压下限】: 在放电过程中如果单体电压低于该设定值,系统将停机,并 报单体电压低故障。

【放出容量】: 在放电过程中如果已放容量大于该设定值,系统将停机,并报放 电容量完成。

【放电时长】: 在放电过程中如果已放时长大于该设定值,系统将停机,并报放 电时长完成。

【放电电流】: 放电电流的设定值,如果放电过程中实际电流与该值有偏离,且 偏离方向和时间超过系统内部设定值,系统将停机,并报放电电故障。在放电过 程中可以手动更改该值,以实现临时电流变换。

【放电状态】:实时显示放电的状态,放电状态有:"放电己停止"、"放电进行中"、 "放电已暂停",三种工作状态。

【(开始放电/复位)/结束放电】:可控制放电仪放电的开始与停止,并可在报警 状态时,进行复位操作,复位后将自动开始放电。 【暂停/继续】:在放电过程中可随时按下该按钮可切换放电的工作状态至暂停状态,在暂停状态下,放电仪不进行放电,但并不停止记录数据,也不清零已放容量和已放时长等值。再次点击"继续"按钮将在原来已放时长和已放容量的基础上进行放电测试。

【停止原因】: 当放电结束时,可显示放电结束的原因。在放电进行中时,该处显示为"无"。该处可显示有:"人为停机"、"过流停机"、"过压停机"、"放电电流故障"、"单体电压低"、"总电压低"、"放电容量完成"、"放电时长完成"、"其它故障"、"过温故障"共10种故障状态。

【当前电压】: 实时显示放电仪的整组电压值,单位为(V)。

【当前电流】: 实时显示放电仪的整组电流值,单位为(A)。

【已放容量】:实时显示放电仪的已放容量值,单位为Ah(安时)。

【已放时长】: 实时显示放电仪的已放时间值,单位为Min(分)。

【最小单体电压】: 实时显示电池组中单体电压最小的单体电压值;

	充目	电 界	面	
充电压高程: 总电压高量: 充电电子 电压容量	50.0V 55.0V 100Ah 60Min 1.0A 0.0V	充单已充充明	.流: 15.(高限: 13.(章 量: 0.0/ 十长: 0.0M 电压: 12.(流: 0.0/)A DOV Ah Min 37V A
生	前状态:	等待开始単体监	测	返回

5.10、充电界面

【充电电压】指充放电仪的输出开路电压,注意:由于充电机的恒流作用,当充电过程中,"当前电压"小于"充电电压"是正常现象,电池的"当前电压"会在充电过程中逐渐变高,而"当前电流"会逐渐变小,最终达到终止条件而结束

充电。

【充电电流】指充放电仪的充电输出限流值,注意:由于充电过程中电池电压会上升,"当前电流"值会在充电电流值以下,逐渐减小,直至小于"终止电流" 后结束。

【总电压高限】当充电过程中,电池总电压超过此设置值时,会自动停机。

【单电压高限】当充电过程中,最大单体电压电压超过此值时,会自动停机。

【充电容量】当充电过程中,已充容量超过此设置值时,会自动停机。

【充电时长】当充电过程中,已充时长超过此设置值时,会自动停机,注意:此 值单位为分钟(Min)。

【终止电流】当充电过程中,随着电池组电压的逐渐升高,充电电流会逐渐减小, 当减小到小于此值时,会自动停机。

【当前状态】实际显示当前的工作状态和报警状态。

【开始】此按键是启、停、复位三键合一功能键,并可实时提示操作。例如:当 产生报警时,此按键会变为:"复位",当处于停止时,此按键会显示为"开始", 当处于运行时,会显示为"结束"。

化界 活 THI 放电电流: 15.0A 放电时长: 60Min 放电容量: 100Ah 总电压低限: 40.0V 单电压低限: 11.50V 充电电压: 50.0V 充电电流: 15.0A 充电容量: 100Ah 充电时长: 60Min 总电压高限: 55.0V 单电压高限: 13.00V 终止电流: 1.0A 循环次数:5 当前状态: 等待开始 当前次数:0 当前电压: 0.0V 当前电流: 0.0A 暂停 单体监测 开始 返回

5.11、活化界面

【活化界面】此界面的放电和充电部分参数的设置与放电界面和充电界面的参数 设置与作用一致。

【循环次数】是指先放电、后充电的轮循次数,每次放电因终止条件达到并完成

放电以后会停顿5秒后便开始充电,当充电终止条件达到后,也会停顿5秒后再 开始放电过程。但如果在充电或放电过程中,产生了报警故障会提前结束并退出 活化过程。

开始按键功能:活化过程中开始按钮一直显示为"结束",停止过程中此按钮会显示为"开始",产生报警后,此按钮会显示为"复位"。

5.12、数据记录页面

	数	据	记	录		
记录编号:1 文件名:Data_Reco 终止原因:放电用 单体电压下限/V: 放电时长设置/Min 终止时时长/Min: 最小单体电压1: 最小单体电压3: 最小单体电压5:	rd_17 818 3流故障 0.000 1:100.0 0.0 0.0 0.000 0.000 0.000 0.000	839 7. txt	记录录组出组止 小小小	:数量: 1 (时后:2017年; 1电压下限/V (容量设正电及/All 1终止电压/V (1) 1.时已放容量, 2. 中华体电压2: 2. 中体电压4: 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 2. 3. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	8月18日8时3 : 80.0 h:100.0 : 0.0 /Ah: 0.0 0.000 0.000 0.000	9分7秒
上一页下一页	删除当	前册	除全部	7]全部车	春	返回

【记录编号】: 是指该数据在所有数据记录中的编号。

【记录数量】: 是指总共有多少组记录数据。

【文件名】: 是指数据记录文件的文件名称。

【记录时间】: 是指记录记录的开始时间,时间精确到秒。

【上一页】:翻页至上一条记录数据。

【下一页】:翻页至上一条记录数据。

【删除当前】: 点击后将删除当前显示的记录数据。

【删除全部】: 点击后将删除所有放电仪中所存储的记录数据。

【全部转存】: 点击后将把放电仪内部存储中所有数据全部转存至外部 U 盘。转存完成后,放电仪内部记录数据将被全部清空。

其它参数不再详述。

5.13、单体监测页面

	单	体	监	测	
最小单体1:0.0000V NO	: 1		最小单	体 2:0.0000 1	NO: 1
最小单体3:0.0000V NO	: 1		最小单	体 4:0.0000 1	10: 1
最小单体 5:0.0000V NO	: 1		最小单	体 6:0.0000 1	l0: 1
单体电压低限: 0.001	1 单	体低限数量	: 1	単体低限已	.到:0
NO. 1: 0.000V NO. 2: 0.0	00V NO.	3: 0.000V	NO.4: 0.00	0V NO. 5: 0.000	v NO. 6: 0.000V
NO. 7: 0.000V NO. 8: 0.0	00V NO.	9: 0.000V	NO. 10:0. 00	OV NO. 11:0.000	v NO. 12:0. 000V
		-		\sim $-$	
返回测试			下一页	迈	回
		L			
	24	TA-	11/-	Seul	
			100		
		r r	-man -	2(J	
	-7-	P4*		2()	
	-75-	P4N		~,	
NO. 13: 0.000V NO. 14: 0.0		5: 0. 000V N). 16: 0. 000	v NO. 17: 0.000V	NO: 18: 0. 000V
NO. 13: 0.000V NO. 14: 0.00 NO. 19: 0.000V NO. 20: 0.00	DOV NO. 15	5: 0. 000V N). 16: 0.000). 22: 0.000	V NO. 17: 0.000V V NO. 23: 0.000V	NO. 18: 0. 000V NO. 24: 0. 000V
NO. 13: 0.000V NO. 14: 0.00 NO. 19: 0.000V NO. 20: 0.00 NO. 25: 0.000V NO. 26: 0.00	00V NO. 15 00V NO. 21 00V NO. 21	5: 0.000V NG 1: 0.000V NG 7: 0.000V NG	0. 16: 0. 000 0. 22: 0. 000 0. 28: 0. 000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V	NO. 18: 0. 000V NO. 24: 0. 000V NO. 30: 0. 000V
NO. 13: 0.000V NO. 14: 0.00 NO. 19: 0.000V NO. 20: 0.00 NO. 25: 0.000V NO. 26: 0.00 NO. 31: 0.000V NO. 32: 0.00	00V NO. 15 00V NO. 21 00V NO. 27 00V NO. 30	5: 0. 000V NG 1: 0. 000V NG 7: 0. 000V NG 3: 0. 000V NG	0. 16: 0. 000 0. 22: 0. 000 0. 28: 0. 000 0. 34: 0. 000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V	N0. 18: 0. 000V N0. 24: 0. 000V N0. 30: 0. 000V N0. 36: 0. 000V
NO. 13: 0.000V NO. 14: 0.00 NO. 19: 0.000V NO. 20: 0.00 NO. 25: 0.000V NO. 26: 0.00 NO. 31: 0.000V NO. 32: 0.00 NO. 37: 0.000V NO. 38: 0.00	00V NO. 15 00V NO. 21 00V NO. 27 00V NO. 30 00V NO. 30	5: 0. 000V N 5: 0. 000V N 7: 0. 000V N 3: 0. 000V N 3: 0. 000V N	0. 16: 0. 000 0. 22: 0. 000 0. 28: 0. 000 0. 34: 0. 000 0. 40: 0. 000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V	N0. 18: 0. 000V N0. 24: 0. 000V N0. 30: 0. 000V N0. 36: 0. 000V N0. 42: 0. 000V
NO. 13: 0.000V NO. 14: 0.00 NO. 19: 0.000V NO. 20: 0.00 NO. 25: 0.000V NO. 26: 0.00 NO. 31: 0.000V NO. 32: 0.00 NO. 37: 0.000V NO. 38: 0.00 NO. 43: 0.000V NO. 44: 0.00	00V NO. 15 00V NO. 21 00V NO. 21 00V NO. 33 00V NO. 35 00V NO. 45	5: 0.000V NG 1: 0.000V NG 7: 0.000V NG 3: 0.000V NG 3: 0.000V NG 5: 0.000V NG	0. 16: 0. 000 0. 22: 0. 000 0. 28: 0. 000 0. 34: 0. 000 0. 40: 0. 000 0. 46: 0. 000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V V NO. 47: 0.000V	N0: 18: 0. 000V N0: 24: 0. 000V N0: 30: 0. 000V N0: 36: 0. 000V N0: 42: 0. 000V N0: 48: 0. 000V
N0. 13: 0.000V N0. 14: 0.00 N0. 19: 0.000V N0. 20: 0.00 N0. 25: 0.000V N0. 26: 0.00 N0. 31: 0.000V N0. 32: 0.00 N0. 37: 0.000V N0. 38: 0.00 N0. 43: 0.000V N0. 44: 0.00 N0. 49: 0.000V N0. 50: 0.00	00V NO. 15 00V NO. 21 00V NO. 27 00V NO. 33 00V NO. 35 00V NO. 51	5: 0.000V N 1: 0.000V N 2: 0.000V N 3: 0.000V N 2: 0.000V N 5: 0.000V N 5: 0.000V N). 16: 0.000). 22: 0.000). 28: 0.000). 28: 0.000). 34: 0.000). 40: 0.000). 46: 0.000). 52: 0.000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V V NO. 47: 0.000V V NO. 53: 0.000V	N0. 18: 0. 000V N0. 24: 0. 000V N0. 30: 0. 000V N0. 36: 0. 000V N0. 42: 0. 000V N0. 48: 0. 000V N0. 48: 0. 000V
N0. 13: 0.000V N0. 14: 0.00 N0. 19: 0.000V N0. 20: 0.00 N0. 25: 0.000V N0. 26: 0.00 N0. 31: 0.000V N0. 32: 0.00 N0. 37: 0.000V N0. 38: 0.00 N0. 43: 0.000V N0. 44: 0.00 N0. 49: 0.000V N0. 50: 0.00 N0. 55: 0.000V N0. 56: 0.00	00V NO. 15 00V NO. 21 00V NO. 21 00V NO. 31 00V NO. 33 00V NO. 35 00V NO. 51 00V NO. 51	5: 0.000V NG 1: 0.000V NG 7: 0.000V NG 3: 0.000V NG 9: 0.000V NG 9: 0.000V NG 1: 0.000V NG 1: 0.000V NG 7: 0.000V NG	0. 16: 0.000 0.22: 0.000 0.28: 0.000 0.34: 0.000 0.40: 0.000 0.46: 0.000 0.52: 0.000 0.58: 0.000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V V NO. 41: 0.000V V NO. 47: 0.000V V NO. 53: 0.000V V NO. 59: 0.000V	N0. 18: 0. 000V N0. 24: 0. 000V N0. 30: 0. 000V N0. 36: 0. 000V N0. 42: 0. 000V N0. 48: 0. 000V N0. 48: 0. 000V N0. 54: 0. 000V N0. 60: 0. 000V
N0. 13: 0.000V N0. 14: 0.00 N0. 19: 0.000V N0. 20: 0.00 N0. 25: 0.000V N0. 26: 0.00 N0. 31: 0.000V N0. 32: 0.00 N0. 37: 0.000V N0. 38: 0.00 N0. 43: 0.000V N0. 44: 0.00 N0. 49: 0.000V N0. 50: 0.00 N0. 55: 0.000V N0. 56: 0.00 N0. 61: 0.000V N0. 62: 0.00	00V NO. 15 00V NO. 21 00V NO. 27 00V NO. 37 00V NO. 37 00V NO. 39 00V NO. 45 00V NO. 57 00V NO. 63	5: 0.000V NG 1: 0.000V NG 7: 0.000V NG 3: 0.000V NG 9: 0.000V NG 5: 0.000V NG 1: 0.000V NG 1: 0.000V NG 1: 0.000V NG 1: 0.000V NG 1: 0.000V NG	0. 16: 0. 000' 0. 22: 0. 000' 0. 28: 0. 000' 0. 34: 0. 000' 0. 40: 0. 000' 0. 45: 0. 000' 0. 52: 0. 000' 0. 53: 0. 000' 0. 64: 0. 000'	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V V NO. 41: 0.000V V NO. 47: 0.000V V NO. 53: 0.000V V NO. 59: 0.000V V NO. 65: 0.000V	N0. 18: 0, 000V N0. 24: 0, 000V N0. 30: 0, 000V N0. 36: 0, 000V N0. 42: 0, 000V N0. 48: 0, 000V N0. 48: 0, 000V N0. 54: 0, 000V N0. 60: 0, 000V N0. 66: 0, 000V
N0. 13: 0.000V N0. 14: 0.00 N0. 19: 0.000V N0. 20: 0.00 N0. 25: 0.000V N0. 26: 0.00 N0. 31: 0.000V N0. 32: 0.00 N0. 37: 0.000V N0. 38: 0.00 N0. 43: 0.000V N0. 44: 0.00 N0. 49: 0.000V N0. 50: 0.00 N0. 55: 0.000V N0. 56: 0.00 N0. 61: 0.000V N0. 62: 0.00 N0. 67: 0.000V N0. 68: 0.00	00V NO. 15 00V NO. 21 00V NO. 21 00V NO. 22 00V NO. 35 00V NO. 45 00V NO. 45 00V NO. 57 00V NO. 63 00V NO. 63	5: 0.000V N3 1: 0.000V N3 2: 0.000V N3 3: 0.000V N3 3: 0.000V N3 5:	0. 16: 0. 000 0. 22: 0. 000 0. 23: 0. 000 0. 34: 0. 000 0. 40: 0. 000 0. 40: 0. 000 0. 52: 0. 000 0. 53: 0. 000 0. 54: 0. 000 0. 64: 0. 000 0. 70: 0. 000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V V NO. 41: 0.000V V NO. 47: 0.000V V NO. 53: 0.000V V NO. 59: 0.000V V NO. 65: 0.000V V NO. 71: 0.000V	N0. 18: 0. 000V N0. 24: 0. 000V N0. 30: 0. 000V N0. 36: 0. 000V N0. 42: 0. 000V N0. 48: 0. 000V N0. 54: 0. 000V N0. 60: 0. 000V N0. 66: 0. 000V N0. 72: 0. 000V
N0. 13: 0.000V N0. 14: 0.00 N0. 19: 0.000V N0. 20: 0.00 N0. 25: 0.000V N0. 26: 0.00 N0. 31: 0.000V N0. 32: 0.00 N0. 37: 0.000V N0. 33: 0.00 N0. 43: 0.000V N0. 44: 0.00 N0. 49: 0.000V N0. 50: 0.00 N0. 55: 0.000V N0. 56: 0.00 N0. 61: 0.000V N0. 63: 0.00	00V NO. 15 00V NO. 21 00V NO. 21 00V NO. 33 00V NO. 33 00V NO. 35 00V NO. 51 00V NO. 51 00V NO. 51 00V NO. 53 00V NO. 65	5: 0.000V NG 1: 0.000V NG 2: 0.000V NG 3: 0.000V NG 3: 0.000V NG 5: 0.000V NG	0. 16: 0. 000 0. 22: 0. 000 0. 23: 0. 000 0. 34: 0. 000 0. 40: 0. 000 0. 46: 0. 000 0. 52: 0. 000 0. 58: 0. 000 0. 58: 0. 000 0. 58: 0. 000 0. 58: 0. 000 0. 59: 0. 000 0. 000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V V NO. 41: 0.000V V NO. 53: 0.000V V NO. 53: 0.000V V NO. 59: 0.000V V NO. 59: 0.000V V NO. 71: 0.000V	N0. 18: 0. 000V N0. 24: 0. 000V N0. 30: 0. 000V N0. 36: 0. 000V N0. 42: 0. 000V N0. 48: 0. 000V N0. 48: 0. 000V N0. 54: 0. 000V N0. 60: 0. 000V N0. 66: 0. 000V N0. 72: 0. 000V
N0. 13: 0.000V N0. 14: 0.00 N0. 19: 0.000V N0. 20: 0.00 N0. 25: 0.000V N0. 26: 0.00 N0. 31: 0.000V N0. 32: 0.00 N0. 37: 0.000V N0. 33: 0.00 N0. 43: 0.000V N0. 44: 0.00 N0. 49: 0.000V N0. 50: 0.00 N0. 55: 0.000V N0. 56: 0.00 N0. 61: 0.000V N0. 62: 0.00 N0. 67: 0.000V N0. 68: 0.00	00V NO. 15 00V NO. 21 00V NO. 27 00V NO. 33 00V NO. 33 00V NO. 35 00V NO. 51 00V NO. 51 00V NO. 53 00V NO. 65	5: 0.000V NG 5: 0.000V NG 7: 0.000V NG 3: 0.000V NG 5: 0.000V NG 5: 0.000V NG 5: 0.000V NG 7: 0.000V NG 7: 0.000V NG 7: 0.000V NG	0. 16: 0. 000 0. 22: 0. 000 0. 28: 0. 000 0. 34: 0. 000 0. 40: 0. 000 0. 46: 0. 000 0. 52: 0. 000 0. 53: 0. 000 0. 58: 0. 000 0. 58: 0. 000 0. 58: 0. 000 0. 70: 0. 000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V V NO. 47: 0.000V V NO. 53: 0.000V V NO. 59: 0.000V V NO. 59: 0.000V V NO. 51: 0.000V V NO. 71: 0.000V	N0. 18: 0. 000V N0. 24: 0. 000V N0. 30: 0. 000V N0. 36: 0. 000V N0. 42: 0. 000V N0. 48: 0. 000V N0. 48: 0. 000V N0. 54: 0. 000V N0. 60: 0. 000V N0. 66: 0. 000V N0. 72: 0. 000V
N0. 13: 0.000V N0. 14: 0.00 N0. 19: 0.000V N0. 20: 0.00 N0. 25: 0.000V N0. 26: 0.00 N0. 31: 0.000V N0. 32: 0.00 N0. 37: 0.000V N0. 33: 0.00 N0. 43: 0.000V N0. 44: 0.00 N0. 49: 0.000V N0. 50: 0.00 N0. 55: 0.000V N0. 55: 0.00 N0. 61: 0.000V N0. 65: 0.00	00V NO. 15 00V NO. 21 00V NO. 27 00V NO. 35 00V NO. 35 00V NO. 35 00V NO. 55 00V NO. 55 00V NO. 65 00V NO. 65	5: 0. 000V NG 1: 0. 000V NG 2: 0. 000V NG 3: 0. 000V NG 3: 0. 000V NG 5: 0. 000V NG	0. 16: 0. 000 0. 22: 0. 000 0. 28: 0. 000 0. 34: 0. 000 0. 40: 0. 000 0. 46: 0. 000 0. 52: 0. 000 0. 53: 0. 000 0. 64: 0. 000 0. 64: 0. 000 0. 70: 0. 000	V NO. 17: 0.000V V NO. 23: 0.000V V NO. 29: 0.000V V NO. 35: 0.000V V NO. 41: 0.000V V NO. 41: 0.000V V NO. 53: 0.000V V NO. 55: 0.000V V NO. 65: 0.000V V NO. 65: 0.000V	N0. 18: 0. 000V N0. 24: 0. 000V N0. 30: 0. 000V N0. 36: 0. 000V N0. 42: 0. 000V N0. 48: 0. 000V N0. 48: 0. 000V N0. 54: 0. 000V N0. 66: 0. 000V N0. 66: 0. 000V

	単	体	监	测	
NO. 73: 0. 000V NO. 74: 0.	ODOV NO.	75: 0.000V	NO. 76: 0	. 0007 NO.	77: 0,000V N0. 78: 0.000V
NO. 79: 0,000V NO. 80: 0.	ODOV NO.	81: 0.000V	NO. 82: 0.	0007 NO.	83: 0,000y NO. 84: 0,000y
NO. 85: 0. 000V NO. 86: 0.	OOOV NO.	87: 0.0007	ND. 88: 0.	0007 NO.	89: 0.000V NO. 90: 0.000V
NO. 91: 0. 000V ND. 92: 0.	0007 NO.	93: 0.000V	ND. 94: 0	0007 NO.	95: 0.000V NO. 96: 0.000V
NO. 97: 0. 000V ND. 98: 0.	OOOV NO.	99: 0.000V	NO. 100:0	000V NO.	101:0.000V NO. 102:0.000V
NO. 103:0. 000V NO. 104:0.	0007 NO.	105:0.000V	NO. 106:0.	0007 NO.	107:0.000V NO. 108:0.000V
NO. 109:0.000V NO. 110:0.	OOOV NO.	111:0.000V	NO. 112:0.	000V NO.	113:0.000V NO. 114:0.000V
NO. 115:0. 000V NO. 116:0.	000V NO.	117:0.0007	ND. 118:0.	000V NO.	119:0.000V NO. 120:0.000V
NO. 121:0.0007 NO. 122:0.	000V NO.	123:0.000V	NO. 124:0.	000V NO.	125:0.000V NO. 126:0.000V
NO. 127:0. 000V NO. 128:0.	OOOV NO.	129:0.000V	NO. 130:0.	0007 NO.	131:0.000V NO. 132:0.000V
	24	74	뇬		
	-#-	_ PA	, init,		88888888888888888888888888888888888888
NO. 133:0.0007NO. 134:0.	-99-	135: 0. 000V	.نتىت . NO. 136:0	い。 000V NO	137:0.0007ND.138:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0.	000V ND. 000V ND.	135: 0. 000V 141: 0. 000V	NO. 136:0	し、0007 NO 1. 0007 NO 1. 0007 NO	, 137:0.0007 ND, 138:0.000 , 143:0,0007 ND, 144:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0. NO. 145:0.000VNO. 146:0.	000V ND. 000V ND. 000V ND.	135: 0. 000V 141: 0. 000V 147: 0. 000V	NO. 136:0 NO. 142:0 NO. 148:0	. 000V NO . 000V NO . 000V NO . 000V NO	137:0.0007 NO. 138:0.000 143:0.0007 NO. 144:0.000 149:0.0007 NO. 150:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0. NO. 145:0.000VNO. 146:0. NO. 151:0.000VNO. 152:0.	000V ND. 000V ND. 000V ND. 000V ND.	135: 0. 000V 141: 0. 000V 147: 0. 000V 153: 0. 000V	NO. 136:0 NO. 142:0 NO. 148:0 NO. 154:0	000V NO 0. 000V NO 0. 000V NO 0. 000V NO 0. 000V NO	137:0.0007 NO.138:0.000 .143:0.0007 NO.144:0.000 .147:0.0007 NO.150:0.000 .155:0.0007 NO.156:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0. NO. 145:0.000VNO. 146:0. NO. 145:0.000VNO. 146:0. NO. 151:0.000VNO. 152:0. NO. 157:0.000VNO. 158:0.	000V ND. 000V ND. 000V ND. 000V ND. 000V ND.	135: 0. 000V 141: 0. 000V 147: 0. 000V 153: 0. 000V 159: 0. 000V	NO. 136:0 NO. 142:0 NO. 148:0 NO. 154:0 NO. 160:0	0007 NO 0007 NO 0007 NO 0007 NO 0007 NO	. 137:0.000V NO.138:0.000 . 143:0.000V NO.144:0.000 . 147:0.000V NO.144:0.000 . 149:0.000V NO.150:0.000 . 155:0.000V NO.156:0.000 . 161:0.000V NO.162:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0. NO. 145:0.000VNO. 146:0. NO. 151:0.000VNO. 152:0. NO. 157:0.000VNO. 158:0. NO. 163:0.000VNO. 164:0.	000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND.	135: 0. 000V 141: 0. 000V 147: 0. 000V 153: 0. 000V 159: 0. 000V 165: 0. 000V	NO. 136:0 NO. 142:0 NO. 148:0 NO. 154:0 NO. 160:0 NO. 166:0	000V NO 0. 000V NO 0. 000V NO 0. 000V NO 0. 000V NO 0. 000V NO	. 137:0.000V NO.138:0.000 . 143:0.000V NO.144:0.000 . 149:0.000V NO.150:0.000 . 155:0.000V NO.156:0.000 . 161:0.000V NO.162:0.000 . 161:0.000V NO.168:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0. NO. 145:0.000VNO. 146:0. NO. 151:0.000VNO. 152:0. NO. 157:0.000VNO. 158:0. NO. 163:0.000VNO. 164:0. NO. 169:0.000VNO. 170:0.	000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND.	135: 0. 000V 141: 0. 000V 147: 0. 000V 153: 0. 000V 159: 0. 000V 165: 0. 000V 171: 0. 000V	NO. 136:0 NO. 142:0 NO. 148:0 NO. 148:0 NO. 166:0 NO. 166:0 NO. 172:0	000V NO 000V NO 000V NO 000V NO 000V NO 000V NO 000V NO	. 137:0.000V NO.138:0.000 143:0.000V NO.144:0.000 149:0.000V NO.150:0.000 155:0.000V NO.156:0.000 161:0.000V NO.162:0.000 167:0.000V NO.168:0.000 173:0.000V NO.174:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0. NO. 145:0.000VNO. 146:0. NO. 151:0.000VNO. 152:0. NO. 157:0.000VNO. 152:0. NO. 163:0.000VNO. 158:0. NO. 163:0.000VNO. 164:0. NO. 169:0.000VNO. 170:0. NO. 175:0.000VNO. 176:0.	000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND.	135: 0.000V 141: 0.000V 147: 0.000V 153: 0.000V 159: 0.000V 165: 0.000V 171: 0.000V 177: 0.000V	NO. 136:0 NO. 142:0 NO. 148:0 NO. 154:0 NO. 160:0 NO. 166:0 NO. 172:0 NO. 178:0	000V NO 000V NO 000V NO 000V NO 000V NO 000V NO 000V NO 000V NO	. 137:0.000V NO.138:0.000 . 143:0.000V NO.144:0.000 . 149:0.000V NO.150:0.000 . 155:0.000V NO.156:0.000 . 161:0.000V NO.166:0.000 . 167:0.000V NO.168:0.000 . 173:0.000V NO.180:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0. NO. 145:0.000VNO. 146:0. NO. 151:0.000VNO. 146:0. NO. 157:0.000VNO. 152:0. NO. 157:0.000VNO. 158:0. NO. 163:0.000VNO. 158:0. NO. 169:0.000VNO. 170:0. NO. 175:0.000VNO. 176:0. NO. 181:0.000VNO. 182:0.	000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND.	135: 0.000V 141: 0.000V 147: 0.000V 153: 0.000V 159: 0.000V 165: 0.000V 165: 0.000V 171: 0.000V 177: 0.000V 183: 0.000V	NO. 136:0 NO. 142:0 NO. 148:0 NO. 154:0 NO. 160:0 NO. 166:0 NO. 172:0 NO. 178:0 NO. 184:0	0007 NO 0007 NO 0007 NO 0007 NO 0007 NO 0007 NO 0007 NO 0007 NO	. 137:0.000V NO. 138:0.000 . 143:0.000V NO. 144:0.000 . 149:0.000V NO. 150:0.000 . 155:0.000V NO. 156:0.000 . 161:0.000V NO. 162:0.000 . 167:0.000V NO. 168:0.000 . 179:0.000V NO. 180:0.000 . 185:0.000V NO. 186:0.000
N0. 133:0.000VN0. 134:0. N0. 139:0.000VN0. 140:0. N0. 145:0.000VN0. 146:0. N0. 151:0.000VN0. 152:0. N0. 157:0.000VN0. 158:0. N0. 163:0.000VN0. 164:0. N0. 169:0.000VN0. 170:0. N0. 175:0.000VN0. 176:0. N0. 181:0.000VN0. 182:0. N0. 187:0.000VN0. 188:0.	000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND.	135: 0. 000V 141: 0. 000V 147: 0. 000V 153: 0. 000V 159: 0. 000V 165: 0. 000V 165: 0. 000V 171: 0. 000V 177: 0. 000V 183: 0. 000V 189: 0. 000V	NO. 136:0 NO. 142:0 NO. 148:0 NO. 154:0 NO. 154:0 NO. 160:0 NO. 172:0 NO. 178:0 NO. 184:0 NO. 190:0	0007 NG 0007 NG 0007 NG 0007 NG 0007 NG 0007 NG 0007 NG 0007 NG	. 137:0.000V N0.138:0.000 . 143:0.000V N0.144:0.000 . 147:0.000V N0.150:0.000 . 155:0.000V N0.156:0.000 . 161:0.000V N0.162:0.000 . 167:0.000V N0.168:0.000 . 173:0.000V N0.174:0.000 . 179:0.000V N0.180:0.000 . 185:0.000V N0.186:0.000 . 191:0.000V N0.192:0.000
NO. 133:0.000VNO. 134:0. NO. 139:0.000VNO. 140:0. NO. 145:0.000VNO. 146:0. NO. 151:0.000VNO. 152:0. NO. 157:0.000VNO. 158:0. NO. 163:0.000VNO. 158:0. NO. 169:0.000VNO. 170:0. NO. 175:0.000VNO. 176:0. NO. 181:0.000VNO. 182:0. NO. 187:0.000VNO. 188:0.	000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND. 000V ND.	135: 0. 000V 141: 0. 000V 147: 0. 000V 153: 0. 000V 159: 0. 000V 165: 0. 000V 171: 0. 000V 177: 0. 000V 183: 0. 000V 189: 0. 000V	NO. 136:0 NO. 142:0 NO. 148:0 NO. 154:0 NO. 166:0 NO. 166:0 NO. 172:0 NO. 178:0 NO. 1790:0	0007 NO 0007 NO 0007 NO 0007 NO 0007 NO 0007 NO 0007 NO 0007 NO 0007 NO	 137:0.000V N0.138:0.000 143:0.000V N0.144:0.000 147:0.000V N0.150:0.000 155:0.000V N0.156:0.000 161:0.000V N0.162:0.000 167:0.000V N0.168:0.000 173:0.000V N0.180:0.000 179:0.000V N0.180:0.000 185:0.000V N0.180:0.000 191:0.000V N0.192:0.000

该页面可显示所有单体模块的采集到的单体电压值。

最小单体电1^{~6}是指在所有单体模块中,最小的6个单体模块电压值。按电压由低到高依次为:"最小单体电压1"至"最小单体电压6"。该单体电压值可以自动屏蔽电压值小于0.5V的电池,或开路、短接的测试端子。即该三情况下的电压值不计入6个最小单体电压中。

六、上位机软件

6.1、【数据管理】-【测试状态】页面

数据类型:	放电数据		280	停止原因: 人为停村	见 最小单体电压1/V	6.704
机房编号:	2	单池通讯方式:	无线	整组电压低限/V: 198.0	最小单体电压2/V	6.710
电池组号:	2	主从模式:	从机	放电容量设置/Ah: 50.0	最小单体电压3/V	6.713
电池组数:	1	单体采集开关:	开	放电时长设置/Min: 600.0	最小单体电压4/V	6.713
电池容量/Ah:	100	电流传感器:	内部电流传感器	停止时刻电压: 230.4	最小单体电压5/V	6.713
整组类型:	48V		本机放电	单体电压低限: 0.0	最小单体电压6/V	6.714
单体类型:	12V		120	放电时长/Min: 134.8		
模块个数:	16	存储间隔/S:	5,	停止时刻电流/A: 4.9		
放电方式:	恒流	数据记录条数:	1267	放电容量/Ah: 11.2		

点击 · 按钮,将弹出选择数据记录文件对话框,找到数据记录文件并点击确定, 该页面将显示记录数据的相关信息。

6.2【数据管理】-【曲线显示】页面

该页面可进行选择性地选择显示某一个单体电池电压值曲线,及总电压曲线。

【单体曲线选择】可通过该下拉列表,选择需要显示的某节电池电压的曲线,或 最小单体电池电压的曲线。

6.3【数据管理】-【单体电压柱状图】页面

该页面可显示数所有单体电池放电前与放电完成后的电压值以蓝红两色的 柱状图进行显示,以鲜明对对蓄电池性能好。蓝色代表放电前电压,红色代表放 电完成后电压。

可根据电池数量手动更改 X 轴坐标,可更好地显示柱状图位置,当电池数量 较多时,可拖动柱状图下方的水平滑动块以显示后面的柱状图,默认情况下 X 轴为自动。

6.4【数据管理】-【表格显示】页面

NMBH State State <ths< th=""><th>最小単体电圧6/V 1#电池 12.555 12.719 12.553 12.718 12.552 12.715 12.550 12.713 12.548 12.711 12.547 12.710 12.546 12.709</th><th>正5/V 最小単体电压6/V 1#电池 ▲ 12.555 12.719 12.553 12.718 12.552 12.715 12.550 12.713 12.548 12.711</th><th>最小单体电压5/V 最 12.526 12 12.525 12 12.523 12</th><th>最小单体电压4/V 12.492</th><th>最小单体电压3/V</th><th>最小单体电压2/V</th><th>是小弟休由压1.0/</th><th></th><th></th><th></th><th></th><th>夷格捽件</th></ths<>	最小単体电圧6/V 1#电池 12.555 12.719 12.553 12.718 12.552 12.715 12.550 12.713 12.548 12.711 12.547 12.710 12.546 12.709	正5/V 最小単体电压6/V 1#电池 ▲ 12.555 12.719 12.553 12.718 12.552 12.715 12.550 12.713 12.548 12.711	最小单体电压5/V 最 12.526 12 12.525 12 12.523 12	最小单体电压4/V 12.492	最小单体电压3/V	最小单体电压2/V	是小弟休由压1.0/					夷格捽件
数目电丘小 包括金仙 包括砂油(M) 型小球电圧小/ 型小球电压小/ 型小球电压小/ 型小球电压小/ 型小球电压小/ 型小球电压小/ 型小球电压小// 型小球电电L// 型小球电压小// 型小球电压小// 型小球电L// 型小球电L// 型小球电L// 型小球电L// 型小球电L// 型小球电L// 型小球电L// 型小球电L// 型/ 型/ 型/ 型/ 型/ 型/ 型/ 型/ 型/ 型// 型/ 型/ U Q Q Q Q 12.276 12.474 12.481 12.490 12.523 12.551	最小单体电压6/V 1#电池 12.555 12.719 12.553 12.718 12.550 12.715 12.550 12.713 12.548 12.711 12.547 12.709	HE5/V 最小単体电压6/V 1#电池 12.555 12.719 12.553 12.718 12.552 12.715 12.550 12.713 12.550 12.713 12.548 12.714	最小单体电压5/V 最 12.526 12 12.525 12 12.525 12 12.523 12	最小单体电压4/V 12.492	最小单体电压3/V	最小单体电压2/V	是小单体由压1小/					
981499 00 0.0 0.6 12.276 12.475 12.481 12.420 12.526 12.525 12.558 12 981499, 980 222.7 1.0 0.0 0.6 12.276 12.474 12.481 12.420 12.525 12.558 1 981499, 980 222.7 1.0 0.0 0.7 12.275 12.473 12.479 12.489 12.523 12.552 1 981499, 980 222.6 1.0 0.0 0.7 12.275 12.472 12.487 12.521 12.548 1 981499,2169 222.6 1.0 0.0 0.7 12.275 12.477 12.487 12.521 12.548 1 981499,2169 222.6 1.0 0.0 0.8 12.274 12.470 12.477 12.487 12.510 12.546 1 981499,2169 222.6 1.0 0.0 8.1 12.274 12.470 12.475 12.485 12.518 12.545 1	12.555 12.719 12.553 12.718 12.552 12.715 12.550 12.713 12.548 12.711 12.547 12.710 12.546 12.709	12.555 12.719 12.553 12.718 12.552 12.715 12.550 12.713 12.548 12.711	12.526 12 12.525 12 12.523 12	12.492	10.401		M. 1 - HARTET A	已放时长/Min	已放容量/Ah	总电流/A	整组电压/V	
9月499 950 22.27 1.0 0.0 0.6 12.276 12.474 12.481 12.490 12.525 12.553 12.554 12.553 12.553 12.554 12.556 12.551 12.556 12.551 12.556 12.551 12.556 12.551 12.556 12.551 12.556 12.557 12.477 12.487 12.551 12.546 12.546 12.547 12.447 12.470 12.475 12.481 12.515 12.546 12.546 12.546 12.546 12.545 12.546 12.545 12.546 12.546 12.546 <	12.553 12.718 12.552 12.715 12.550 12.713 12.548 12.711 12.547 12.710 12.546 12.709	12.553 12.718 12.552 12.715 12.550 12.713 12.548 12.711	12.525 12		12.401	12.475	12.276	0.6	0.0	1.0	222.8	9时49分 0秒
981496 992 22.7 10 0.0 0.7 12.75 12.473 12.479 12.489 12.523 12.525 12 981496.9169 22.6 1.0 0.0 0.7 12.275 12.472 12.479 12.489 12.523 12.525 1 981496.9169 22.6 1.0 0.0 0.7 12.275 12.472 12.477 12.487 12.521 12.548 1 981496.9169 22.6 1.0 0.0 0.8 12.274 12.477 12.485 12.500 12.547 1 981496.9216 22.6 1.0 0.0 0.8 12.274 12.470 12.475 12.485 12.510 12.546 1 981496.9286 22.6 1.0 0.0 0.9 12.274 12.476 12.481 12.518 12.545 1 981496.9369 22.26 1.0 0.0 1.0 12.274 12.469 12.475 12.481 12.517 12.544 1	12.552 12.715 12.550 12.713 12.548 12.711 12.547 12.710 12.546 12.709	12.552 12.715 12.550 12.713 12.548 12.711	12 523 12	12.490	12.481	12.474	12.276	0.6	0.0	1.0	222.7	9时49分5秒
944%)18b 22.26 1.0 0.0 0.7 12.275 12.472 12.487 12.522 12.550 12.550 944%)18b 22.26 1.0 0.0 0.7 12.275 12.472 12.487 12.522 12.550 12.551 12.548 12.551 12.548 12.551 12.548 12.551 12.548 12.551 12.548 12.551 12.548 12.552 12.551 12.548 12.552 12.551 12.548 12.552 12.551 12.546 12.552 12.552 12.552 12.552 12.552 12.552 12.552 12.552 12.552 12.552 12.554 12.552 12.554 12.5	12.550 12.713 12.548 12.711 12.547 12.710 12.546 12.709	12.550 12.713	ILIOLO IL	12.489	12.479	12.473	12.275	0.7	0.0	1.0	222.7	9时49分9秒
981499:06 22.25 1.0 0.0 0.7 12.275 12.472 12.477 12.487 12.521 12.548 1 981499:216 22.26 1.0 0.0 0.8 12.274 12.470 12.477 12.485 12.520 12.547 1 981499:236 22.26 1.0 0.0 0.8 12.274 12.470 12.475 12.485 12.519 12.546 1 981499:236 22.26 1.0 0.0 0.9 12.274 12.470 12.475 12.481 12.518 12.545 1 981499:386 22.24 1.0 0.0 0.9 12.274 12.469 12.476 12.481 12.517 12.543 1 981499:386 22.24 1.0 0.0 1.0 12.274 12.469 12.476 12.481 12.517 12.543 1 981499:386 22.25 1.0 0.0 1.0 12.274 12.469 12.475 12.483 12.517 12.543	12.548 12.711 12.547 12.710 12.546 12.709	12.548 12.711	12.522 12	12.487	12.478	12.472	12.275	0.7	0.0	1.0	222.6	9时49分13秒
9月49分21b 22.26 1.0 0.0 0.8 12.274 12.470 12.475 12.520 12.574 12.475 9月49分22b 22.25 1.0 0.0 0.8 12.274 12.470 12.475 12.485 12.519 12.546 1 9月49分28b 22.26 1.0 0.0 0.9 12.274 12.471 12.476 12.481 12.518 12.546 1 9月49分32b5 22.26 1.0 0.0 0.9 12.274 12.476 12.481 12.518 12.543 1 9月49分32b5 22.24 1.0 0.0 1.0 12.274 12.469 12.475 12.483 12.517 12.543 1 9月49分32b5 22.25 1.0 0.0 1.0 12.274 12.469 12.475 12.483 12.517 12.543 1 9月49分34b7 22.5 1.0 0.0 1.1 12.274 12.468 12.475 12.481 12.516 12.542 1 9月495	12.547 12.710 12.546 12.709		12.521 12	12.487	12.477	12.472	12.275	0.7	0.0	1.0	222.5	9时49分16秒
9月49分28b 222.5 1.0 0.0 0.8 12.274 12.470 12.475 12.451 12.519 12.566 1 9月49分28b 222.6 1.0 0.0 0.9 12.274 12.470 12.475 12.485 12.519 12.546 1 9月49分28b 222.6 1.0 0.0 0.9 12.274 12.476 12.485 12.517 12.544 1 9月49分395b 222.4 1.0 0.0 1.0 12.274 12.469 12.475 12.483 12.517 12.544 1 9月49分395b 222.4 1.0 0.0 1.0 12.274 12.469 12.475 12.483 12.517 12.544 1 9月49分304b 222.5 1.0 0.0 1.0 12.274 12.469 12.475 12.483 12.517 12.543 1 9月49分344b 22.5 1.0 0.0 1.1 12.274 12.468 12.475 12.483 12.516 12.542 1 <tr< td=""><td>12,546 12,709</td><td>12.547 12.710</td><td>12.520 12</td><td>12.485</td><td>12.477</td><td>12.470</td><td>12.274</td><td>0.8</td><td>0.0</td><td>1.0</td><td>222.6</td><td>9时49分21秒</td></tr<>	12,546 12,709	12.547 12.710	12.520 12	12.485	12.477	12.470	12.274	0.8	0.0	1.0	222.6	9时49分21秒
9月49分280 22.26 1.0 0.0 0.9 12.274 12.471 12.476 12.484 12.518 12.545 12.549 9月49分3260 22.26 1.0 0.0 0.9 12.274 12.469 12.476 12.481 12.517 12.544 1 9月49分360 22.24 1.0 0.0 1.0 12.274 12.469 12.475 12.483 12.517 12.543 1 9月49分369 22.25 1.0 0.0 1.0 12.274 12.469 12.475 12.485 12.517 12.543 1 9月49分369 22.25 1.0 0.0 1.0 12.274 12.468 12.475 12.485 12.517 12.543 1 9月49分3640 22.55 1.0 0.0 1.1 12.274 12.468 12.475 12.481 12.516 12.542 1 9月49936460 22.55 1.0 0.0 1.1 12.274 12.468 12.475 12.482 12.516 12.542		12.546 12.709	12.519 12	12.485	12.476	12.470	12.274	0.8	0.0	1.0	222.5	9时49分23秒
98149531b 222.6 1.0 0.0 0.9 12.274 12.499 12.476 12.485 12.517 12.544 1 98149538b 222.4 1.0 0.0 1.0 12.274 12.469 12.476 12.483 12.517 12.544 1 98149538b 222.4 1.0 0.0 1.0 12.274 12.469 12.475 12.483 12.517 12.544 1 98149538b 222.5 1.0 0.0 1.0 12.274 12.469 12.475 12.481 12.517 12.544 1 98149536b 222.5 1.0 0.0 1.1 12.274 12.469 12.475 12.483 12.516 12.543 1 98149536b 222.5 1.0 0.0 1.1 12.274 12.468 12.475 12.482 12.516 12.542 1 98149536b 22.5 1.0 0.0 1.1 12.274 12.468 12.475 12.482 12.516 12.542 <	12.545 12.707	12.545 12.707	12.518 12	12.484	12.476	12.471	12.274	0.9	0.0	1.0	222.6	9时49分28秒
9月49分36P 2224 1.0 0.0 1.2 <th1.2< th=""> 1.2 <th1.2< th=""> <th1.2<< td=""><td>12.544 12.706</td><td>12.544 12.706</td><td>12.517 12</td><td>12.485</td><td>12.476</td><td>12.469</td><td>12.274</td><td>0.9</td><td>0.0</td><td>1.0</td><td>222.6</td><td>9时49分31秒</td></th1.2<<></th1.2<></th1.2<>	12.544 12.706	12.544 12.706	12.517 12	12.485	12.476	12.469	12.274	0.9	0.0	1.0	222.6	9时49分31秒
9月49分398 22.5 1.0 0.0 1.0 12.74 12.48 12.47 12.48 12.51 12.54 1 9月49分394 22.5 1.0 0.0 1.1 12.274 12.49 12.475 12.485 12.516 12.548 1 9月49分3045 22.5 1.0 0.0 1.1 12.274 12.498 12.475 12.482 12.516 12.542 1 9月4959.469 22.5 1.0 0.0 1.1 12.274 12.488 12.475 12.482 12.516 12.542 1 9月4959.469 22.5 1.0 0.0 1.2 12.74 12.488 12.475 12.482 12.516 12.542 9月4959.469 22.5 1.0 0.0 1.2 12.478 12.475 12.482 12.516 12.542	12.543 12.705	12.543 12.705	12.517 12	12.483	12.476	12.469	12.274	1.0	0.0	1.0	222.4	9时49分36秒
981495344b 2225 1.0 0.0 1.1 12.274 12.469 12.475 12.483 12.516 12.543 1 981495346b 222.5 1.0 0.0 1.1 12.274 12.468 12.475 12.483 12.516 12.543 1 981495316b 222.5 1.0 0.0 1.1 12.274 12.468 12.475 12.482 12.516 12.542 981495316b 222.5 1.0 0.0 1.2 12.274 12.468 12.475 12.482 12.516 12.542 12.542 12.516 12.542 12.542 12.516 12.542 12.542 12.516 12.542 <td>12.544 12.704</td> <td>12.544 12.704</td> <td>12.517 12</td> <td>12.485</td> <td>12.475</td> <td>12.468</td> <td>12.274</td> <td>1.0</td> <td>0.0</td> <td>1.0</td> <td>222.5</td> <td>9时49分39秒</td>	12.544 12.704	12.544 12.704	12.517 12	12.485	12.475	12.468	12.274	1.0	0.0	1.0	222.5	9时49分39秒
98749594660 222.5 1.0 0.0 1.1 12.274 12.468 12.475 12.482 12.516 12.542 1 98749455160 222.5 1.0 0.0 1.2 12.274 12.468 12.475 12.482 12.516 12.542 1	12.543 12.704	12.543 12.704	12.516 12	12.483	12.475	12.469	12.274	1.1	0.0	1.0	222.5	9时49分44秒
9874995190 2225 1.0 0.0 1.2 12.274 12.468 12.475 12.482 12.516 12.542 1	12.542 12.703	12.542 12.703	12.516 12	12.482	12.475	12.468	12.274	1.1	0.0	1.0	222.5	9时49分46秒
	12.542 12.702	12.542 12.702	12.516 12	12.482	12.475	12.468	12.274	1.2	0.0	1.0	222.5	9时49分51秒
9#J49分55秒 222.5 1.0 0.0 1.2 12.274 12.468 12.475 12.482 12.516 12.543 1	12.543 12.702	12 542 12 702	12.516 12	12.482	12.475	12.468	12.274	1.2	0.0	1.0	222.5	9时49分55秒
98f49分59秒 222.5 1.0 0.0 1.2 12.273 12.468 12.475 12.482 12.515 12.541 1		12.345 12.702	12515 12	12.482	12.475	12.468	12.273	1.2	0.0	1.0	222.5	9时49分59秒
9时50分2秒 222.4 1.0 0.0 1.3 12.274 12.468 12.475 12.482 12.515 12.544 1	12.541 12.702	12.541 12.702	12.515	40.400	12.475	12.468	12.274	1.3	0.0	1.0	222.4	9时50分2秒
9t50546 2224 1.0 0.0 1.3 12.273 12.468 12.474 12.482 12.515 12.541 1	12.541 12.702 12.544 12.701	12.545 12.702 12.541 12.702 12.544 12.701	12.515 12	12.482					0.0	1.0	222.4	9时50分4秒
9#j50%111 222.4 1.0 0.0 1.4 12.273 12.469 12.475 12.482 12.515 12.541 1	12.541 12.702 12.544 12.701 12.541 12.700	12.541 12.702 12.541 12.702 12.544 12.701 12.541 12.700	12.515 12 12.515 12 12.515 12	12.482	12.474	12.468	12.273	1.3	0.0	1000		
	12.541 12.702 12.544 12.701 12.541 12.700 12.541 12.701	12.5% 12.702 12.541 12.702 12.544 12.701 12.541 12.700 12.541 12.701	12.515 12 12.515 12 12.515 12 12.515 12	12.482 12.482 12.482	12.474 12.475	12.468 12.469	12.273 12.273	1.3 1.4	0.0	1.0	222.4	9时50分11秒
	12.541 12.702 12.544 12.701 12.541 12.700 12.541 12.701	12.545 12.702 12.541 12.700 12.541 12.700 12.541 12.700 12.541 12.701	12.515 12 12.515 12 12.515 12 12.515 12	12.482 12.482 12.482	12.474 12.475	12.468 12.469	12.273 12.273	1.3	0.0	1.0	222.4	9时50分11秒

点进"更新表格数据"后,将更新表格记录数据。

6.5、【数据管理】-【数据报表】页面

● <	帮助文档	-3	÷ 由	247 7	が由いいや	<u> ギィ</u> シ ト・	(古 和
		Ê			人も沙に	トレイ	ドイント
				_	1.001		
状态 曲线显示 单体电压柱状图 表格显示 数据报表	RX17 B E:/HDGC/E	lattery_Dis_h	位机2\数据	\Data_Record_	17 811 94814.txt	数据记录时间: 1/年8	3月11日 9时48分14秒
(八司久왕) (二)	_						
A-9 = 17 . [X000 [A =]	电池组名: 2	#	4	主产工艺: xxx	x		1
生产日期: 2007-12-17	投入田田・	005 13 13	- 1				
	300/CH140 · 2	005-12-12		0.8449.12 - 0000	×	化成据主	
电池型号: abcd-1234	Mitthe :	000	1	86武人员: www	a.	土现权农	
10 00 000				June Cor I June	•		
0106-6标: 1#机房							
	单体结论)					
正常电池		开始电压	终止电压	实验结论	维护方案	备注	
开始电压与终止电压相差电压值/V: 32	1#	12.803	12.629	正常	继续使用!		
	2#	12.329	12.223	正常	继续使用!		
深后电池 开始中国大学中国大学中国大学 3	3#	12.624	12.477	正常	继续使用!		
11XH-BIT-BIATT-BITHBE-BITHBYA: 20	4#	12.562	12.422	正常	继续使用!		
《化电池	5#	12.546	12.414	正常	继续使用!		
开始电压与终止电压相差电压值/V: - 4	6#	12.835	12.658	正常	继续使用!		
	7#	12.846	12.662	正常	继续使用!		
严重劣化电池	8#	12.557	12.414	正常	继续使用!		
开始电压与终止电压相差电压值/V: 3	9#	12,602	12.448	正常	继续使用!		
开始由压动终止由压供现由压值///	10#	12.733	12.575	正常	继续使用!		
	11#	12,713	12.559	正常	继续使用!	-	
潛后电池維护方案:	12#	12.871	12.673	正常	继续使用!		
故由	13#	0.000		長堂	由池检测导觉, 请检查!		
	14#	0.000	-	品堂	由沖检測品堂, 清松香!		
	15#	0.000		52	由池校測显堂,清松春!		
45.71.00 St. 40.12 - 2.00	16#	0.000		52	由洲於副島堂 清於音!		
劣化电池维护方案	10#	0.000		50	由池松測局堂 清松春!		
劣化电池维护方案 进行充放电话化	17#	1 63 636363			· · · · · · · · · · · · · · · · · · ·		
会化电池维护方案 进行东放电话化	17#	0.000		7115	Contraction of the state of		

手工输入"公司名称"等项目后,点击更新数据,"单体结论"表格将按左侧设定的四种电压状态判断标准对每节电池进行规类和判定。可以手工在备注栏 对某些单体电池进行人为输入标识。

以上操作完成后,点击"生成报表"按钮,将自动将以上数据填入到预先设置的报告模版中,用户可更据需要进行打印或另存。

6.6、生成的报表图片

	☆ 文档1 - Microsoft Word 表描工具 表描工具 And	
开始 指 案件 (4 私贴 3 ■ 1 ■ 2 ■ 2	入页面布局 引用 邮件 审阅 视图 Acrobat 设计 布局 中区正文 小四 · A · A · 例 · 愛 A 正 · abe x, x · Aa · ♥ · A · A · ● · · · · · · · · · · · · · ·	● ▲ ▲ 後 後 後 ・ ・
	蓄电池测试仪检测报告。	£3
	公司名称: <u>xxxx 公司</u>	
	机房名称: _1#机房	
	电池组名: _2#_。	
	电池型号: <u>_abcd-1234</u>	
	生产日期: <u>2007-12-17</u>	
	投产日期: <u>2005-12-12</u>	
	测试单位: _xxxx_。	
	生产工艺:	
	测试人员: <u>xxxx</u> 。	*
页面: 14/18 字数: 9	24 🥸 中文(简体,中国) 插入	🕂 🔍

(m) ↓ ♥ < 5) =	文档 1 - Micro	soft Word	表格工具	Round Bard			
开始 插入 页面布局	引用邮件	审阅 视图 A	Acrobat 设计	布局		۲	
☆ ☆ ☆ ☆ ☆ ☆ 聞 び ☆ 聞 び ☆ 聞 び ☆ ひ ☆ ひ ☆ ひ ☆ ひ ☆ ☆ ひ ☆ ☆ ひ ☆	四 • (A* (A*) 参) (* Aa*) 参 * <u>A</u> • (1 5体			AaBbCcDd 平正文 无间隔 样式	AaBt 表题1 更改样式	升 编辑 ·	
		2V+2	单体电压低限: ↩	12.3+	e l	ā	
	模块个数: ↩	3₽	放电时长/Min: ₽	10.0+2	e la	-	
	放电方式:↩	恒流↔	停止时刻电流/A: +	P 2.0P	¢		
	过压保护值/V: ↩	250+2	放电容量/Ah: ↩	0.2+2	ę		
	单池通讯方式: ↩	无线↩	最小单体电压 1/V:+	₽ 12.223₽	e la		
	主从模式: ↩	从机₽	最小单体电压 2/V:+	P 12.411₽	φ.		
	单体采集开关: ↩	开₽	最小单体电压 3/V:+	P 12.414	¢		
	电流传感器:↩	内部电流传感 器√	最小单体电压 4/V:•	₽ 12.422₽	ę		
	控制方式: ↩	本机放电↔	最小单体电压 5/V:+	P 12.449₽	ø		
	过流保护值: ↩	<mark>60</mark> ₽	最小单体电压 6/V:+	P 12.476P	с.	1	
	存储间隔/Mine	3⊷	ę	ę	ø		
	ø	ø	ø	¢	¢	=	
	● ● 电池状况判断标准 「五份由正上终	È:≁ ↓ a c tiža a c (d)	Ma				
	正堂由池・。	正电压伸至电压围/	2.00				
	这后由洲,2		3.00				
	冷山电池: *		4.00				
	严重严化由油	د :	5.00	ų			
	」 「重」 化电池: +			ą			
	レービー						
	电池编号↔ 开始	电压。终止电压	← 实验结论+ 维	前方案→ 备注→	e .		
	1#+2 12.8	03+2 12.629+2	正常↩	鲮使用! ∉ ↩	ę		
	2## 12.3	29₽ 12.223₽	正常↩ 继	綾使用! ᡇ ᡇ	e .		
	3## 12.6	24+2 12.477+2	正常↩	耧使用!≠ ≠	e la		
	4#@ 12.5	52¢ 12.422¢	正常↩ 组	錢使用!↔ ↔	φ.		
	5#@ 12.54	460 12.4140	正常↩ 继	耧使用!⊄ ↔	e.		
	6## 12.8	35¢ 12.658 ¢	正常~ 继	续使用! ∉ ⋞	ę	1	
	7#@ 12.8	46+2 12.662+2	正常↩	錢使用!∉ ↩	¢.	0	
	8#0 12.5	570 12.4140	正常↩ 组	錢使用! ↔ ↔	ę	\$	
页面: 14/18 字数: 924 🕉 中文(简	简体,中国) 插入			9	90% 😑		

6.7、远端放电界面

2 対現化上位机・// 単位化・// ■								
数据管理 远端放电 无线终端	帮助文档	蓄电池放电测试仪上位机						
送線位理以用□ 後日地浜/A 後 COM23 ↓ 前代地址 10 12元保护值/V 250 単地圧伝現值 200 単地圧伝現值 12.2 12.5	数 明 开 关 留 守 开 关 通 密 開 位 通 一 一 の の 一 の の の の の の の の の の の の の	済沢福示 公司电流 日本金は用作1 0 投管販売 女原电流 日本金は用作2 0 シト非活示 日本金は用作2 0 U型指示 日本金は用作2 0 ・ 日本金は用作2 0 ・ 日本金は用作2 0 ・ 日本金は用作3 0 ・ 日本金は用作3 0 ・ 日本金は用作6 日本金は用作6						
0.5- 0- 14:19:02		14.19:04						

【远端放电】: 当放电仪中开启了远端放电功能后,通过一根 USB 转 485 通讯线 连接电脑主机,并安装相应的驱动程序后,便可在此页面对放电仪进行远端的测 试操作。

可根据实际电压值手动更改 Y 轴坐标,可更好地显示曲线位置,默认情况下 Y 轴为自动。

6.8、无线终端——单体监测界面

模块数 最大电压	量 () <mark>16</mark> 电池号 53	v	当前通讯楼	独 7 3.065	最小电压电	池号 1		小值 12.71	v	无线 有线	通讯成功?	8
1~12#	12.710	12.899	12.816	12.716	12.920	12.853	12.824	12.774	12.771	12.808	12.739	12.728
13~24#	12.765	12.949	12.870	12.768	12.974	12.907	12.875	12.828	12.823	12.862	12.792	12.782
25~36#	12.734	12.915	12.835	12.736	12.939	12.875	12.844	12.794	12.791	12.833	12.761	12.748
37~ <mark>48</mark> #	12.735	12.922	12.842	12.746	12.945	12.880	12.849	12.801	12.797	12.838	12.766	12.755
49~60#	12.856	13.039	12.964	12.863	13.065	12.999	12.966	12.917	12.914	12.955	12.885	12.872
61~72#	12.793	12.981	12.902	12.812	13.003	12.939	12.908	12.858	12.859	12.895	12.825	12.812
73~84#	12.728	12.917	12.837	12.748	12.933	12.877	12.846	12.795	12.792	12.832	12.762	12.750
85~96#	12.742	12.932	12.852	12.763	12.948	12.891	12.859	12.810	12.807	12.846	12.776	12.764
97~108#	12.734	12.916	12.835	12.759	12.919	12.875	12.843	12.794	12.793	12.832	12.761	12.750
109~120	12.765	12.941	12.864	12.786	12.946	12.900	12.868	12.818	12.817	12.857	12.786	12.773
12 1~1 32	12.739	12.920	12.841	12.769	12.920	12.877	12.848	12.796	12.794	12.833	12.764	12.754
133~144	12.754	12.925	12.848	12.773	12.931	12.884	12.853	12.803	12.807	12.839	12.770	12.759
145~156	12.750	12.923	12.843	12.773	12.924	12.880	12.850	12.799	12.799	12.839	12.768	12.756
157~168	12.762	12.932	12.851	12.777	12.931	12.889	12.860	12.809	12.808	12.848	12.775	12.766
169~180	12.748	12.921	12.841	12.764	12.924	12.878	12.850	12.799	12.797	12.837	12.766	12.754

【单体监测】页面:

【设备连接】: 电脑连接"USB 无线终端"设备,蓄电池连接"单体电压采集盒"时,可在此处实时监测单体电压数据。注意: 此方式不能接入放电仪,只是 USB 无线终端与单体电压采集盒之间的一对一通讯。如果将放电仪开启会对通讯数据 有信号干扰。如果需要在放电过程中通过电脑远程监测单体电压,请使用"充放 电过程在线监测方式"。

【模块数量】:请正确填写单体电压采集盒的数量,以免数据采集计算错误。

【当前通讯模块】:由于 USB 无线终端与单体电压采集盒之间是轮询采集方式, 且采集频率是1秒一次,此处可以观察到当前数据更新的模块是哪一个。

【最大电池电压号】、【最大值】、【最小电池电压号】、【最小值】:分别指示了电压最高的那节电池编号及电压值,与单体电压最低的那节的电池编号及电压值。 【无线/有线】:可以选择通过射频率无线方式进行通讯或 RS485 有线方式进行通

讯。

【正开始/负开始】: 正开始是指整组电池电压的正极为第1节电池的正极,负开 始是指,整组电压的负极为第1节电池的负极。正开始与负开始的数据从完全颠 倒。

6.9、无线终端——远端放电

【远端放电】:

在使用此功能前,必须要确保放电仪系统参数设置里远端控制打开,且从机 地址与上位机通讯地址设为一致。

在放电仪需要频繁更改放电参数,且不方便在放电仪本机上操作的情况下, 可以选择使用远端放电,远端放电必须要配合有 RS485 通讯线,最大通讯距离为 1000米,如果距离再远则需要增加RS485中继器(客户自行采购)。该功能尤其 适合需要通过上位机,或其它控制设备远端操控放电仪的场合。

远端放电可以多机并联控制,形成星型主从式拓扑结构,从而可以一主多从 地工作,只需要设置好相应的通讯地址即可。

远端放电过程中可以实时地监测单体电压数据,并以柱状图的形式显示出 来,可以通过修改 X 或 Y 坐标参数,来放大或缩小显示数据和区域。

6.10、无线终端——充放电过程在线监测

充/放电过程在线监测

【充放电过程在线监测】在应用此功能前必须要确保放电仪的软件版本在 V1.3 以上,同时在放电仪的系统参数设置里,将单体监测功能打开,并且必须关闭远 端放电功能。否则该功能将不能正常运行。

七、常见故障及排查方法

序 号	故 障	排查方式				
1	某个模块单体电压全部为0	检查确认无线模块接线方式				
2	每个无线模块前三个单体电压为	接线顺序接反了,按从0号到12,				
	0.	正极开始				
3	模块电源灯亮,单体接收不到,确	按上文提到的配置方式修复				
	认接线正常					
4	连放电电缆时,蜂鸣器鸣叫	放电电缆正负接反				
5	放电电流正常,电压不下降	蓄电池组没有脱离系统				
6	放电采集不到总电压	总电压采集线未接				
7	放电提示放电电流故障	空气断路器未合上或放电回路未闭合				
8	温度过高	确认放电仪的摆放,注意通风,热量				
		流向				
9	存储空间不足	定期删除已拷贝的数据文件				
10	数据存不进去	机器重启,不要在放电过程中进行内				
		部存储和外部存储的切换操作,每次				
		做完测试将数据转存到U盘内进行保				
		存				
11	放电开始后显示电流不增加,但实	参数设置页面,内外部电流传感器选				
	际电流一直在增大	择错误				